54 | 0 | 40 |
下载次数 | 被引频次 | 阅读次数 |
在含水层厚度大、透水性强的地区进行深基坑开挖时,易引发突涌、流砂、沉降变形等风险。为有效规避此类风险,可采用竖向防渗帷幕与水平封底防渗帷幕(HWC)形成“封闭式”地下水阻滞方案。本研究依托海太过江隧道江北岸基坑工程,综合考虑工作井HWC的渗透性、厚度和布设位置等关键设计参数,建立了三维有限元地下水运动模型。模拟分析了坑内、坑外降水两种模式下HWC的厚度、布设位置、渗透性等三个关键设计参数对工作井基坑涌水量的影响规律,结果表明:1)无论采用坑内还是坑外降水,HWC厚度对涌水量的影响均微乎其微;2)在坑内降水模式下,HWC的渗透性对基坑涌水量影响显著,渗透性越低,阻水效果越明显;3)在坑外降水模式下,调整HWC的布设位置将伴随基坑抗突涌安全系数的改变,总体而言,布设越深,安全系数越高,涌水量越小。
Abstract:In regions with thick and highly permeable aquifers, deep foundation pit excavation is prone to risks like water inrush, sand boiling, and settlement deformation. To effectively mitigate these risks, a fully enclosed groundwater cutoff system can be implemented by combining vertical cutoff walls with a horizontal waterproof curtain(HWC). This study, based on the foundation pit project on the north bank of the Haitai River-Crossing Tunnel, establishes a three-dimensional groundwater flow model using the finite element method considering key design parameters of the HWC such as its permeability, thickness, and burial location. It investigates the effects of three key design parameters of the HWC—thickness, burial location, and permeability—on water inflow into the working shaft under both internal and external dewatering conditions. The results indicate that: 1) Regardless of whether dewatering occurs inside or outside the pit, the HWC thickness has a negligible impact on water inflow; 2) Under internal dewatering conditions, the HWC permeability significantly affects water inflow, with lower permeability enhancing the water-blocking effect; 3) Under external dewatering conditions, adjusting the burial location of the HWC alters the anti-inrush safety factor, with a deeper burial depth leading to a higher safety factor and reduced water inflow.
[1] 于伟,折学森.长江三角洲区域性软土路基沉降特性研究.安全与环境学报,2016,16(6):102~108.
[2] 周红波,蔡来炳,高文杰.城市轨道交通车站基坑事故统计分析.水文地质工程地质,2009,36(2):67~71.
[3] 武永霞.基坑止水帷幕对含水层渗流作用的计算方法研究.上海:上海交通大学,2016.
[4] Tan Y,Lu Y,Wang D.Catastrophic failure of Shanghai Metro Line 4 in July,2003:Occurrence,emergency response,and disaster relief.Journal of Performance of Constructed Facilities,2021,35(1):1~16.
[5] 胡力绳.杭州地铁1号线深基坑地下连续墙变形有限元分析.路基工程,2011,(3):90~93.
[6] Tan Y,Huang R,Kang Z,et al.Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai:Building response.Jo-urnal of Performance of Constructed Facilities,2016,30(6):04016040.
[7] Wu Y,Lyu H,Shen J S,et al.Geological and hydrogeological environment in Tianjin with potential geohazards and groundwater control during excavation.Environmental Earth Sciences,2018,77:392.
[8] Wang J,Liu X T,Liu J X,et al.Dewatering of a 32.55 m deep foundation pit in MAMA under leakage risk conditions.KSCE Journal of Civil Engineering,2018,22(8):2784~2801.
[9] 王建秀,郭太平,吴林高,等.深基坑降水中墙-井作用机理及工程应用.地下空间与工程学报,2010,6(3):564~570.
[10] 李光明,李明生.悬挂式止水帷幕基坑降水控制措施研究.地下空间与工程学报,2020,16(3):921~932.
[11] 张志红,秦文龙,张钦喜,等.悬挂式止水帷幕基坑控水优化方法.东北大学学报(自然科学版),2021,42(2):242~251.
[12] 徐杨青,刘国锋,盛永清.深基坑嵌岩地下连续墙隔渗效果分析与评价方法研究.岩土力学,2013,34(10):2905~2910.
[13] 冯晓腊,蔡娇娇,熊宗海,等.落底式止水帷幕条件下深基坑群井试验研究.水文地质工程地质,2016,43(6):107~112.
[14] 曹成勇,施成华,彭立敏,等.深厚强透水地层基坑深层水平封底隔渗帷幕设计方法及其应用.中南大学学报(自然科学版),2020,51(4):1012~1021.
[15] 陆建生.深基坑水平止水帷幕无压性地下水控制设计及实践.探矿工程(岩土钻掘工程),2018,45(6):57~62.
[16] 孙晓贺,施成华,曹成勇,等.强透水地层水平帷幕作用下基坑渗流特性.东南大学学报(自然科学版),2021,51(6):1002~1008.
[17] 蒋盛钢,刘胜利.深厚潜水地铁基坑地下水控制方案分析与评估.地下空间与工程学报,2019,15(增刊1):333~340.
[18] 陈益峰,卢礼顺,周创兵,等.Signorini型变分不等式方法在实际工程渗流问题中的应用.岩土力学,2007,28(增刊1):178~182.
[19] Dai Y F,Zhou Z F.Steady seepage simulation of underground oil storage caverns based on Signorini type variational inequality formulation.Geosciences Journal,2015,19(2):341~355.
[20] 陈益峰,周创兵,毛新莹,等.水布垭地下厂房围岩渗控效应数值模拟与评价.岩石力学与工程学报,2010,29(2):308~318.
[21] 周志芳,沈琪,石安池,等.白鹤滩水电工程左岸玄武岩层间错动带渗透破坏预测与防治模拟.工程地质学报,2020,28(2):211~220.
[22] 水利部科技推广中心.2024年度水利先进实用技术重点推广指导目录.北京:水利部科技推广中心,2024.
[23] 中华人民共和国住房和城乡建设部.建筑基坑支护技术规程:JGJ 120-2012.北京:中国建筑工业出版社,2012.
基本信息:
DOI:
中图分类号:U231.3
引用信息:
[1]庄超,梁海燕,余雪娟.水平封底防渗帷幕深基坑降水数值模拟[J].勘察科学技术,2025,No.261(02):1-9.
基金信息:
国家自然科学基金项目(42272279)